Find where the curve 2x^2 + xy + y^2 = 14 has stationary points

d/dx (xy) = x dy/dx + y 

d/dx (y^2) = 2y dy/dx [This is from the chain rule]

So, d/dx (2x^2 + xy + y^2 = 14) 

=> 4x + x dy/dx + y + 2y dy/dx = 0

set dy/dx = 0 as stationary point has gradient 0

Obtains 4x+y=0

y=-4x

Sub this back into our original equation

14x^2 = 14

x^2 = 1

This is only satisfied by +1 and -1

When x=1 y=-4, when x=-1 y=4

So stationary points are (1,-4) and (-1,4)

MH
Answered by Matthew H. Maths tutor

8715 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 3cos(theta) + 5sin(theta) in the form Rcos(theta - alpha) where R and alpha are constants, R>0 and 0<alpha<90. Give the exact value of R and the value of alpha to 2dp.


∫ log(x) dx


x = 2t + 5, y = 3 + 4/t. a) Find dy/dx at (9.5) and b) find y in terms of x.


Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning