x = t^3 + t, y = t^2 +1, find dy/dx

dy/dx = dy/dt x dt/dx

x = t3 + t

dx/dt = 3t2 +1

y = t2 +1

dy/dt = 2t

dy/dx = 2t x (1 / (3t2 +1) )

= 2t / (3t2+ 1)

SK
Answered by Sukhwinder K. Maths tutor

6069 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that x = 1/2 is a root of the equation 2x^3 – 9x^2 + kx – 13 = 0, find the value of k and the other roots of the equation.


Find the equation of the tangent to the curve y^3 - 4x^2 - 3xy + 25 = 0 at the point (2,-3).


Differentiate f(x) = 14*(x^2)*(e^(x^2))


Evaluate f'(1) for the function f(x) = (x^2 + 2)^5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning