x = t^3 + t, y = t^2 +1, find dy/dx

dy/dx = dy/dt x dt/dx

x = t3 + t

dx/dt = 3t2 +1

y = t2 +1

dy/dt = 2t

dy/dx = 2t x (1 / (3t2 +1) )

= 2t / (3t2+ 1)

Answered by Sukhwinder K. Maths tutor

5282 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx for (x^2)(y^3) + ln(x^y) = 5sin(6x)/x^(1/2)


What is the value of sin(theta), cos(theta), tan(theta) where theta = 0, 30, 45, 60, 90


The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.


y = (x^3)/3 - 4x^2 + 12x find the stationary points of the curve and determine their nature.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences