x = t^3 + t, y = t^2 +1, find dy/dx

dy/dx = dy/dt x dt/dx

x = t3 + t

dx/dt = 3t2 +1

y = t2 +1

dy/dt = 2t

dy/dx = 2t x (1 / (3t2 +1) )

= 2t / (3t2+ 1)

Answered by Sukhwinder K. Maths tutor

5153 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the binomial expansion of (-8+4x)^(2/3) up to and including the term in x^2.


Find the area bounded by the curve x^2-2x+3 between the limits x=0 and x=1 and the horizontal axis.


Differentiate y = x^3 + 2x^2 + 4x + 3


solve the following definite integral by decomposition into partial fractions: \int_{1}^{2}{\frac{1}{x^2+x}}dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences