Prove e^(ix) = cos (x) + isin(x)

We first write each side of the equation using the maclaurin series for each function.

eix = 1 + ix + (ix)2/2! + (ix)3/3! + (ix)4/4! + ......

eix = 1 + ix - x2/2! - ix3/3! + x4/4! + .....

cos(x) + isin(x) = (1 - x2/2! + x4/4! - x6/6! +....) + i(x - x3/3! + x5/5! - x7/7! + ......)

writing the above equation in increasing powers of x:

cos(x) + isin(x) = 1 + ix - x2/2! - ix3/3! + x4/4! + ....

As seen the maclaurin series for each side of the equation are the same hence eix = cos(x) + isin(x)

Related Further Mathematics A Level answers

All answers ▸

How do I determine whether a system of 3 linear equations is consistent or not?


What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))


Evaluate ∫sin⁴(x) dx by expressing sin⁴(x) in terms of multiple angles


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences