Prove e^(ix) = cos (x) + isin(x)

We first write each side of the equation using the maclaurin series for each function.

eix = 1 + ix + (ix)2/2! + (ix)3/3! + (ix)4/4! + ......

eix = 1 + ix - x2/2! - ix3/3! + x4/4! + .....

cos(x) + isin(x) = (1 - x2/2! + x4/4! - x6/6! +....) + i(x - x3/3! + x5/5! - x7/7! + ......)

writing the above equation in increasing powers of x:

cos(x) + isin(x) = 1 + ix - x2/2! - ix3/3! + x4/4! + ....

As seen the maclaurin series for each side of the equation are the same hence eix = cos(x) + isin(x)

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues for the matrix (4/2/3,2/7/0,-2/1/8)


Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))


Find all square roots of the number 3 + 4i.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences