State Newton's 2nd Law, and use this explain the vertical motion of a parachutist in the descent from her plane to Earth.

Newton's second law: Fnet = m.a. The net force (vector) on an object is directly proportional to the product of its mass (scalar) and its acceleration (vector). At the instant the parachutist leaves the plane, there is a downward force, F = mg ~ 10m on her. (This force is termed 'weight'). There is no upward force as of this instant. The net force downwards causes the downward acceleration of the parachutist, as deduced from Newton's 2nd Law. As the parachutist gains velocity, however, drag force plays an increasingly significant role (as Fdrag is proportional to A x v2, where A is the cross-sectional area and v is the velocity of the object). The drag foce acts in the opposite direction to the parachutist's weight, and therefore the net force diminishes with increasing downward velocity. Ultimately, the drag force and her weight are equal and opposite forces, so that Fnet = 0. This implies that she is no longer accelerating and is falling at a constant velocity, v1. When the parachutist opens her parachute, effect is that the cross-sectional area of the falling body has increased significantly. The drag force therefore increases significantly (because as stated above,Fdrag is proportional to A), and Fnet acts upwards, leading to a downward deceleration (or upward acceleration) of the parachutist in her descent. The velocity of the parachutist begins to decrease, until the drag force and her weight have equalised once more. At this stage, the parachutist continues to fall at a lower, constant velocity, v2, until she reaches the ground.

AB
Answered by Akash B. Physics tutor

3833 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

If a 30N force is applied to a stationary object of mass 10kg, at what speed will the object accelerate?


How to use fleming's left hand rule.


Two students are provided with a starting pistol, a stopwatch and a long measuring tape. The starting pistol produces a loud sound and a puff of smoke. Describe how the students use the apparatus to calculate the speed of sound.


If a box full of feathers and a box full of bricks were to be dropped at the same time and from the same height, which one would hit the ground first?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning