Phosphorus is burned in air at 500 ºC to produce gaseous phosphorus(V) oxide. 220 g of phosphorus was reacted with an excess of air. Calculate the volume, in m3, of gaseous phosphorus(V) oxide produced

Additional information given:

P4 (s) + 5O2  (g) = P4O10 (g)     Pressure = 101kPa     Temp = 500oC     gas constant R = 8.31JK-1mol-1

Question to student: What are the first observations from the equation? 

Equation is perfectly balanced; therefore it can be assumed that all the phosphorous has reacted, esp as there is an excess. The product is a gas of oxygen.

Question to student: With a highlighter, let's go through the question, identify the key information and what it means.From the information given, what equation can we use to calculate the volume?

Based on the information, we can use the ideal gas law to calculate the volume! PV = nRT... rearranged to V = nRT/P

n = no. of moles of phosporous in the reaction. We know that the atomic mass for the phosphorous element is 31gmol-1. So the number of moles of P4 in 220g would be 220 / (4 x 31) = 1.77

R = gas constant = 8.31 JK-1mol-1   

T= temp in Kelvin = 500oC + 273 = 773K

P = gas pressure in Pa = 101 kPa x 1000

So, V = (1.77 x 8.31 x 773) / (101 x 1000) = 0.1128m3..... 0.113m3

NB
Answered by Natalie B. Chemistry tutor

4488 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

How do you make a buffer?


A 25 cm3 sample of an unknown concentration of sulfuric acid was titrated against 0.1 mol dm-3 sodium hydroxide. The average titre was 20 cm3. Calculate the concentration of the sulfuric acid.


How do amino acids change at different pH?


0.28 g of a gaseous hydrocarbon was turned in excess oxygen. 0.88 g of carbon dioxide and 0.36 g of water were formed. The volume of 0.28 g of the hydrocarbon at 1.01 x10^5 Pa and 298 k is 123 cm^3. Work out the molecular formula of the hydrocarbon.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences