How do you use the product rule?

The product rule is used to find the differential of expressions of the form y = u(x)*v(x) where u(x) and v(x) are functions in terms of x. An example of such an expression could be y = x2sin(x). The product rule states that for y = u(x)*v(x), the first derivative is given by y' = u'(x)v(x) + u(x)v'(x) (the symbol ' refers to the first derivative). Applying this to our example, we first need to define what u(x) and v(x) are. We could let u(x) = x2 and v(x) = sin(x). We could have also defined v(x) = x2 and u(x) = sin(x). The order in this case doesn't matter as long as one is consistent, but we will be continuing with our first definition. We now need to find what u'(x) and v'(x) are. As u(x) = x2, u'(x) = 2x . Also, v(x) = sin(x), v'(x) = cos(x) By applyin the formula y' = u'(x)v(x) + u(x)v'(x) we can therefore find that y' = 2x(sin(x)) + x2(cos(x)).

Answered by Laura L. Maths tutor

3178 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand the following brackets, (6x^2-4)(2x+3)


how do i calcualte the length of an unknown side of a right angled triangle


There are n sweets in a bag, 6 of which are orange. If the probablility of eating 2 orange sweets from the bag, one after the other, is 1/3, show that n^2 - n - 90 = 0. State any assumptions made.


Explain the difference between the domain and range of a function.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences