How do you use the product rule?

The product rule is used to find the differential of expressions of the form y = u(x)*v(x) where u(x) and v(x) are functions in terms of x. An example of such an expression could be y = x2sin(x). The product rule states that for y = u(x)*v(x), the first derivative is given by y' = u'(x)v(x) + u(x)v'(x) (the symbol ' refers to the first derivative). Applying this to our example, we first need to define what u(x) and v(x) are. We could let u(x) = x2 and v(x) = sin(x). We could have also defined v(x) = x2 and u(x) = sin(x). The order in this case doesn't matter as long as one is consistent, but we will be continuing with our first definition. We now need to find what u'(x) and v'(x) are. As u(x) = x2, u'(x) = 2x . Also, v(x) = sin(x), v'(x) = cos(x) By applyin the formula y' = u'(x)v(x) + u(x)v'(x) we can therefore find that y' = 2x(sin(x)) + x2(cos(x)).

Answered by Laura L. Maths tutor

2829 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Anna has 6 bananas. Ben has 2.5 times more bananas than Anna. Callum has a third as many bananas as Anna and Ben have together. How many bananas do Anna, Ben and Callum have together?


How do you add fractions? And how do you multiply fractions?


Expand the brackets in the following expression and indicate what the graph would look like: y=(5x+1)(2x-3)


How should I go about factorising x^2+5x+6?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences