Why is the actual yield of ATP during aerobic respiration lower than the theoretical yield of 38 ATP molecules?

Although the theoretical yield can be up to 38 ATP molecules per molecule of glucose, this yield is very rarely achieved. It is important to consider at which stages the losses of ATP occur and why. Once 2 net molecules of ATP are produced after glycolysis, which occurs in the cytoplasm, pyruvate must be transported into the mitochondrial matrix, where the next stage will take place (i.e. the link reaction and the Kreb's cycle). Pyruvate is polar, so needs to be actively transported into the mitochondrion, so we initially lose some ATP to get the pyruvate inside the organelle. Some ATP is also used for active transport of reduced NAD+ produced during glycolysis into the inner mitochondrial membrane as for this we once again need an active transport mechanism. In the last stage of respiration, some protons leak through the inner mitochondrial membrane back inside the matrix, so proton motive force which spins the headpiece of ATP synthase to produce ATP is decreased, hence less ATP produced.

MT
Answered by Milton T. Biology tutor

42247 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

How is blood pumped by the heart?


What are three adaptations in a leaf for photosynthesis?


Colour blindness is a recessive trait caused by an error in the X chromosome. A couple without color blindness are expecting their second child. Their first child was born colour blind. What is the probability of their second child being colour blind?


How is insulin secretion controlled?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning