y' = (2x)/(y+1). Solve for y.

y' = dy/dx = (2x)/(y+1) Separate x's and y's in this case.

y + 1 dy = 2x dx Now integrate both sides.

(y2)/2 + y = (2x2)/ 2 + C  Don't forget the constant. 

(y2)/2 + y = x2 + C 

Answered by Daniel M. Maths tutor

3609 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).


How do you find the minimum of the equation sin^2(x) + 4sin(x)?


3 green balls, 4 blue balls are in a bag. A ball is removed and then replaced 10 times. What is the probability that exactly 3 green balls will be removed?


Using the Trapezium rule with four ordinates (three strips), estimate to 4 significant figures the integral from 1 to 4 of (x^3+12)/4sqrt(x). Calculate the exact value of this integral, comparing it with your estimate. How could the estimate be improved?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences