y' = (2x)/(y+1). Solve for y.

y' = dy/dx = (2x)/(y+1) Separate x's and y's in this case.

y + 1 dy = 2x dx Now integrate both sides.

(y2)/2 + y = (2x2)/ 2 + C  Don't forget the constant. 

(y2)/2 + y = x2 + C 

DM
Answered by Daniel M. Maths tutor

4433 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By using the substitution x = tan(u), find the integral of [1 / (x^2+1) dx] between the limits 1 and 0


Find the first derivative of f(x) = tan(x).


Find the derivative (dy/dx) of the curve equation x^2 -y^2 +y = 1.


Differentiating (x^2)(sinx) Using the Product Rule


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning