y' = (2x)/(y+1). Solve for y.

y' = dy/dx = (2x)/(y+1) Separate x's and y's in this case.

y + 1 dy = 2x dx Now integrate both sides.

(y2)/2 + y = (2x2)/ 2 + C  Don't forget the constant. 

(y2)/2 + y = x2 + C 

DM
Answered by Daniel M. Maths tutor

4207 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the centre and radius of the circle x^2+y^2-6x+4y=-4


Find the equation of the tangent to the curve y = 3x^2 + 4 at x = 2 in the form y = mx + c


Using first principles find the differential of x^2


The curve C has the equation y = 1/2x^3 - 9x^3/2 + 8/x + 30, find dy/dx. Show that point P(4, -8) lies on C


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning