Differentiate y = x(x+3)^4

 To differentiate this function we use the product rule. In the product rule we, leave the first alone, differentiate the second, and leave the second alone, differentiate the first.                                                                                                                  Say y = U * V (U and V are both functions of x)                                                                                                                      Then in general we have y' = U dV/dx + V dU/dx For this example we have; y' = x * d/dx (x+3)4 +  (x+3)4 d/dx x                      y' = x * 4 * (x+3)3 * 1 +  (x+3)4  * 1                                                                                                                                        When differentiating bracketed term we start differentiating outside the brackets and work our way in, therefore initially treating the brackets like a single term then accounting for the terms inside the brackets. To simplify the final expression we now take out the common factor.                                                                                                                                                       y' =  (x+3)3 [4x + (x+3)]                                                                                                                                                         Therefore, y' = (x+3)3 (5x+3)

Answered by Harry H. Maths tutor

3464 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the


Find the exact solution, in its simplest form, to the equation ln(4y + 7) = 3 + ln(2 – y) (Core Maths 3 Style Question)


How to differentiate the function f(x)= 3x^3 + 2x^-3 - x^(1/2) + 6?


Given that the graph f(x) passes through the point (2,3) and that f'(x)=6x^2-14x+3, find f(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences