Solve the following simultaneous equations: (1) 4x+y=7 and (2) 3x+2y=9

This question can be answered by the elimination method. I will choose to eliminate 'y' in this case. Firstly, multiply equation (1) by 2, resulting in 8x+2y=14. Now we can subtract eqaution (2): 3x+2y=9 from equation (1): 8x+2y=14. This results in 5x=5, showing we have eliminated 'y'. Both sides of the equation can be divided by 5. giving x=1. Next, substitute x=1 into equation (1): 41+y=7, so y=3. This means the answer is x=1 and y=3. To check our answer is correct, substitute these values for x and y into equation (2): 31+2*3=9, which gives 9=9 showing us that our answer is correct.

Answered by Alex D. Maths tutor

4865 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Rationalise the denominator of 1/(4 + sqrt(3))


David travels from home to work at 30 mph. At the end of the day, he travels from work back home via the same route at 40 mph. What is his average speed while travelling? (Give your answer as a simplified fraction) (None-Calculator)


If f(x) = 5 – x and g(x) = 3x + 7, simplify f(2x) + g(x – 1)


Factorise x^2 −x−12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences