Solve the following simultaneous equations: (1) 4x+y=7 and (2) 3x+2y=9

This question can be answered by the elimination method. I will choose to eliminate 'y' in this case. Firstly, multiply equation (1) by 2, resulting in 8x+2y=14. Now we can subtract eqaution (2): 3x+2y=9 from equation (1): 8x+2y=14. This results in 5x=5, showing we have eliminated 'y'. Both sides of the equation can be divided by 5. giving x=1. Next, substitute x=1 into equation (1): 41+y=7, so y=3. This means the answer is x=1 and y=3. To check our answer is correct, substitute these values for x and y into equation (2): 31+2*3=9, which gives 9=9 showing us that our answer is correct.

Answered by Alex D. Maths tutor

5172 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A 4kg bag of rice costs £3.20 and a 6kg bag of rice costs £5.80. Which bag of rice is the best value for money? Show all your working.


Show that (sqrt(3) + sqrt(75))^{2} = 108


The equation of line L is y= 3x+2 and the equation of line M is 3y–9x+5=0. Show that these lines are parallel.


Raya buys a van for £8500 plus VAT at 20%. Raya pays a deposit for the van. She then pays the rest of the cost in 12 equal payments of £531.25 each month. Find the ratio of the deposit Raya pays to the total of the 12 equal payments.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences