A right angle triangle has a base of √8 and a height of (√10+3). Show that the area is equal to 2√5+3√2.

The area of a triangle is equal to 1/2 x base x height, so we can write the equation for this question as: Area = 1/2 x √8 x (√10+3) We can then simplify √8 by writing it as its factors; √8 + √4√2, which equals 2√2. We can write it like this because 4 is a square number so its root is a rational number. We can the rewrite our area equation as: Area = 1/2 x 2√2 x (√10+3) and we can simplify it to Area = √2 x (√10+3) because 1/2 x 2√2 is just 2√2. We can now either expand the equation or play around with the numbers in the bracket to make things easier for ourselves. Lets look at √10. Using the same thing we did for √8, we can rewrite it as its factors; so √10 = √2√5. This will make our expansion much easier: √2 x (√2√5 +3) = √2√5 x √2 + 3 x√2 We can then simplify this complicated looking equation to get the answer we are looking for: Area = 2√5 + 3√2

Answered by Elizabeth H. Maths tutor

3717 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The y-intercept of A is 7. A also passes through point (7, 2). (a) Find an equation of A in the form y = mx + c. (b) B is perpendicular to A and also has a y-intercept of 7. Write down the equation for B in the form y = mx + c.


Work out 2^3 + 4^2


Solve the simultaneous equations: 1) 3x+5y=14 and 2) -3y+10=x


Make y the subject of (y/x)+(2y/(x+4))=3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences