Differentiate sin(x)*x^2

Notice that (sin(x))'= cos(x) and (x^2)' = 2x

We use the product rule to differentiate, by noticing the expression is a product. 

so (fxgx)' = f'xgx + fx*g'x

substituting in we get (sin(x)*x^2) = cos(x)*x^2 + sin(x)*2x

Answered by Drenusha G. Maths tutor

2883 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.


If I have the equation of a curve, how do I find its stationary points?


Find the equation of the straight line passing through the origin that is tangent to the curve y = ln(x).


Why bother with learning calculus?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences