Differentiate sin(x)*x^2

Notice that (sin(x))'= cos(x) and (x^2)' = 2x

We use the product rule to differentiate, by noticing the expression is a product. 

so (fxgx)' = f'xgx + fx*g'x

substituting in we get (sin(x)*x^2) = cos(x)*x^2 + sin(x)*2x

Answered by Drenusha G. Maths tutor

2910 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the minimum point of the curve y = 3x^(2) + 9x + 10


What is the determinant of a 2 by 2 matrix?


Use integration by parts to find the integral of x sin(3x)


A pot of water is heated to 100C and then placed in a room at a temperature of 18C. After 5 minutes, the pan temperature falls by 20C. Find the temperature after 10minutes.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences