Solve the following simultaneous equations y + 4x + 1 = 0, y^2 + 5x^2 + 2x = 0

Here we can either use the substitution method or the elimination method. The elimination method here would be hard to carry out due to there being no term which we can make equal in terms of only one of the variables in order to eliminate that variable. Therefore we choose substitution. 

y = -4x - 1 is substituted into the second equation.

(-4x-1)^2 + 5x^2 + 2x = 0 which is only in the form of x's so we can now solve to find the possible x values.

1 + 8x + 16x^2 + 5x^2 + 2x = 0                21x^2 + 10x + 1 = 0

Here we need to solve a quadratic. First we check if we can have x's with no coefficients. As we have 21x^2, we cant. But, we can notice that we need 2 numbers that multiply to give 1. These numbers must be either -1 and -1 or 1 and 1. As we need our x's to multiply to 21x^2, we need the factors of 21x^2. 21 and 2 or 7 and 3. 21 and 1 will be very far off ever giving 10x with the real parts only being 1 or -1. Therefore we try 7 and 3. 

(7x + 1)(3x + 1) is our solved quadratic.

x = -1/7, -1/3

Subbing the x values back into equation 1 gives our y values

y = -3/7, 1/3

AW
Answered by Alex W. Maths tutor

4357 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The function f is defined for all real values of x as f(x) = c + 8x - x^2, where c is a constant. Given that the range of f is f(x) <= 19, find the value of c. Given instead that ff(2) = 8, find the possible values of c.


Find all solutions of the equation in the interval [0, 2π]. 5 cos^3 x = 5 cos x


Calculate the derivative of x^x


A particle P is projected vertically upwards from a point 20m above the ground with velocity 18m/s, no external forces act on it other than gravity. What will its speed be right before it hits the ground? Give your answer to one decimal place.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning