Solve the simultaneous equations - x+y=2 and 4y^2 - x^2 = 11

The objective of simultaeous equations is to be able to work out two unknowns by using two equations in which they are both involved. The first step is to label the equation x+y=2 as equation 1 and 4y- x= 11 as equation 2. Rearrange equation 1 to make one of the unknowns the subject so that we can susbititute this into the second equation leaving only one unknown for us to work out. For example, making x the subject gives us x=2-y and let that be equation 3. Now substitute this into equation 3 giving us the fourth equation 4y2 - (2-y)2 = 11. Expand the brackets giving us 4y2 - (4-4y+y2) = 11 and then further simplify this to give us 3y2 + 4y - 4 = 11. Now subtract 11 from both sides giving us the final quadratic 3y2 + 4y - 15 = 0. Then use the product and sum method of factorising quadratics in order to factorise this equation to (y+3)(3y-5)=0. When the product of two things is zero, it must mean that one of the values equals zero so knowing this means that we know either y+3=0 or 3y-5=0 and so rearranging both gives us that y=-3 or y=5/3. We now use both values of y and substitute them back into equation 3 which is x=2-y to find out both values of x. This gives us x=5 (x=2--3) when y= -3 and x = 1/3 (x=2-5/3) when y= 5/3.

Answered by Keshlee C. Maths tutor

13759 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A man travels 360m along a straight road. He walks for the first 120m at 1.5ms-1, runs the next 180m at 4.5ms-1, and then walks the final 60m at 1.5ms-1. A women travels the same route, in the same time. At what time does the man overtake the women?


What is the derivative of f(x)=sqrt(3x+2)=(3x+2)^(1/2)?


How do I differentiate y=x^x?


Explain briefly the Normal Distribution


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences