Solve the simultaneous equations - x+y=2 and 4y^2 - x^2 = 11

The objective of simultaeous equations is to be able to work out two unknowns by using two equations in which they are both involved. The first step is to label the equation x+y=2 as equation 1 and 4y- x= 11 as equation 2. Rearrange equation 1 to make one of the unknowns the subject so that we can susbititute this into the second equation leaving only one unknown for us to work out. For example, making x the subject gives us x=2-y and let that be equation 3. Now substitute this into equation 3 giving us the fourth equation 4y2 - (2-y)2 = 11. Expand the brackets giving us 4y2 - (4-4y+y2) = 11 and then further simplify this to give us 3y2 + 4y - 4 = 11. Now subtract 11 from both sides giving us the final quadratic 3y2 + 4y - 15 = 0. Then use the product and sum method of factorising quadratics in order to factorise this equation to (y+3)(3y-5)=0. When the product of two things is zero, it must mean that one of the values equals zero so knowing this means that we know either y+3=0 or 3y-5=0 and so rearranging both gives us that y=-3 or y=5/3. We now use both values of y and substitute them back into equation 3 which is x=2-y to find out both values of x. This gives us x=5 (x=2--3) when y= -3 and x = 1/3 (x=2-5/3) when y= 5/3.

Answered by Keshlee C. Maths tutor

14336 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is (5+3i)*(3+5i)


Particle A mass 0.4kg and B 0.3kg. They move in opposite direction and collide. Before collision, A had speed 6m/s and B had 2m/s. After collision B had 3m/s and moved in opposite direction. Find speed of A after collision with direction and Impulse on B.


Derive Law of Cosines using Pythagorean Theorem


What is an improper fraction, and how to I make thisproper so that it can be differentiated?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences