Solve the simultaneous equations x + y = 1 , x^2 -2xy+y^2=9

So here we want to eliminate one variable so we are only working with either x or y by themself, so to do this we can rearrange the first equation of x+y=1 to x= 1-y. This new equation can therefore be substituted into the second equation to replace all the ‘x’ values. This will create the equation (1-y)^2 -2(1-y)y + y^2 =9. We then expand this expression to get 1-4y+4y^2=9, which can be rearranged to 4y^2-4y-8 = 0. The common factor 4 can be taken out, and we can factorise this expressions into 4(y-2)(y+1)=0. We can calculate that the values of y are y=2 and y=-1. Using the first equation, when y=2, this means that x=-1; and when y=-1, x=2.

Answered by Belinda S. Maths tutor

6402 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that x^2 - 8x +17 <0 for all real values of x


Find the first differential with respect to x of y=tan(x)


F ind all values of x in the range 0° <= x <= 180° satisfying tan(x+45°)= 8tan(x)


Let f(x)=x^3-6x+3. i)Differentiate f(x) to find dy/dx. ii) Given that dy/dx = 12, find the value of x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences