Find the x coordinate of the minimum point of the curve y = e3x - 6e2x + 32.

To find the minimum point of this curve you need to differentiate y and set it equal to zero before solving for x. If the questions does not say otherwise give your answer to 3 s.f. dy/dx = 3e^3x -12e^2x = 0 solving this for e^x gives : e^x =4 and you need to take the natural logarithm of both sides to find x. x=ln(4)

Answered by Hermione W. Maths tutor

4474 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate by parts?


Express (3x^2 - 3x - 2)/(x-1)(x-2) in partial fractions


How to integrate lnX?


Evaluate the integral between 5 and 3 for xe^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences