Find the x coordinate of the minimum point of the curve y = e3x - 6e2x + 32.

To find the minimum point of this curve you need to differentiate y and set it equal to zero before solving for x. If the questions does not say otherwise give your answer to 3 s.f. dy/dx = 3e^3x -12e^2x = 0 solving this for e^x gives : e^x =4 and you need to take the natural logarithm of both sides to find x. x=ln(4)

Answered by Hermione W. Maths tutor

4473 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find CO-Ordinates of intersection of 2x+3y=12 and y=7-3x


i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


Find the antiderivative of the function f(x)=(6^x)+1


Solve dy/dx= (x√(x^2+3))/e^2y given that y=0 when x=1, giving your answer in the form y = f(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences