Suppose a population of size x experiences growth at a rate of dx/dt = kx where t is time measured in minutes and k is a constant. At t=0, x=xo. If the population doubles in 5 minutes, how much longer does it take for the population to reach triple of Xo.

2.925 minutes This question involves solving a first order differential equation via the separation of variables and then substituting in initial conditions in order to find a particular solution. Something akin to it may show up in your A Level Maths exam.

Answered by Scott W. Maths tutor

2915 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined for x>0 as y = 9 - 6x^2 - 12x^4 . a) Find dy/dx. b) Hence find the coordinates of any stationary points on the curve and classify them.


A circle is given by the equation x^2+y^2-20x-24y+195=0. Draw this circle.


Find the integral of (cosx)*(sinx)^2 with respect to x


How do I find the maximum/minimum of a curve?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences