Simultaneously solve these equations 3x+y=7 and 3x-y=5

Method 1 (Elimination) -

You can see that If you add the 2 equations together you can eliminate the y variable like so 6x=12, then if you divide both sides by 6 you get x=2. Then if you place x=2 back into either of the equations you get y=1.

Method 2 (Substitution) -

Take equation 1 and rearrange it so you get y in terms of x, so all the y's on one side and all the x's on the other side. You get y=7-3x. Take this expression for y and put it into equation 2, 3x-y=5. You get 3x - (7-3x) = 5. If you expand out the brackets you get 6x-7=5 and so 6x=12 then dividing both sides by 6, x=2. Like before place x=2 into either equation to get y=1.

Answered by Charlotte B. Maths tutor

3378 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Please expand the brackets in the following equation to get a quadratic equation. Then, please show using the quadratic formula that the solutions to the equation are x=3 and x=5. Here is the starting equation: (x-3)(x-5)=0


Question from an Edexcel GCSE Maths Higher Paper (Nov 2018) - Solve the simultaneous equations: 5x + y = 21, x-3y = 9 (3 marks)


Show that y=3x-2 and 3y-9x+5=0 are parallel.


There are 4 blue balls, 2 red balls, and 5 green balls in a bag. James removes one ball and does not replace it. James removes a second ball. What is the probability that both balls will be the same colour.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences