Integrate, by parts, y=xln(x),

First, we need to separate the RHS as components of U and V. Using the LATE (logarithms, algebra, trigonometry, exponentials) technique, we see that logarithms have priority to algebra hence U = lnx and dV/dx = x. Next, we differentiate the U and integrate the dV/dx to obtain dU/dx = 1/x and V = x2/2. To integrate by parts we do: UV minus the integral of dU/dx times V. Thus, I (the integral) = (x2/2)lnx - ∫x/2.dx and once integrated the integral becomes (x2/2)lnx - x2/4 + C (never forget the constant C for the general solution to an integration problem).

Answered by Makhdoom S. Maths tutor

3000 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find f'(x) and f''(x) when f(x) = 3x^2 +7x - 3


Differentiate 4(x^3) + 3x + 2 with respect to x


Find the turning point of the line y = -2x^2 +5x -9


Three forces (4i + 7j)N, (pi +5j)N and (-8i+qj) N act on a particle of mass 5 kg to produce an acceleration of (2i - j) m s 2 . No other forces act on the particle. Find the resultant force acting on the particle in terms of p and q. THEN find p and Q


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences