Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.

First take natural logs of both sides, giving us: ln(3x * e4x) = ln(e7).  The RHS can be simplified using the definition of natural logs, so ln(e7) = 7.

We can then apply the product rule for logs (ln(a * b) = ln(a) + ln(b)), which gives: ln(3x) + ln(e4x) = 7.

Using the power rule, (ln(ab) = b*ln(a)) and the def. of natural logs, the equation can be simplified further: xln(3) + 4x = 7.

Factorise by taking out the factors of x to give: x(ln(3) + 4) = 7.

Then divide both sides by (ln(3) + 4) to get the equation with x as the subject: x = 7 / (ln(3) + 4).

We now have an exact value for x and we can check the answer by substituting it back into the original equation and checking that we get e7.

Answered by Hugo M. Maths tutor

4278 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^3


(a) By using a suitable trigonometrical identity, solve the equation tan(2x-π/6)^2 =11-sec(2x-π/6)giving all values of x in radians to two decimal places in the interval 0<=x <=π .


a typical question would be a setof parametric equations y(t) and x(t), asking you to find dy/dx and then the tangent/normal to the curve at a certain point (ie t = 2)


Find the gradient of the curve y = 5(x^2} - 2x + 3 when x = 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences