Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.

First take natural logs of both sides, giving us: ln(3x * e4x) = ln(e7).  The RHS can be simplified using the definition of natural logs, so ln(e7) = 7.

We can then apply the product rule for logs (ln(a * b) = ln(a) + ln(b)), which gives: ln(3x) + ln(e4x) = 7.

Using the power rule, (ln(ab) = b*ln(a)) and the def. of natural logs, the equation can be simplified further: xln(3) + 4x = 7.

Factorise by taking out the factors of x to give: x(ln(3) + 4) = 7.

Then divide both sides by (ln(3) + 4) to get the equation with x as the subject: x = 7 / (ln(3) + 4).

We now have an exact value for x and we can check the answer by substituting it back into the original equation and checking that we get e7.

Answered by Hugo M. Maths tutor

4700 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.


Show that x^2 - x +2 is positive for all values of x


An ellipse has the equation (x^2)/4 + (y^2)/9 = 1. Find the equation of the tangent at (-6/5 , 12/5)


Differentiate y = x^3 + 2x^2 + 4x + 7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences