Simplify (5-2√3)/(√3-1) giving your answer in the form p +q√3, where p and q are rational numbers

The trick here is to use a technique called the difference of squares. If we multiply the top and bottom of the fraction by the conjugate* of the denominator, we can remove any square root terms from the denominator.

*If the denominator is √3-1, its conjugate is √3+1.

((5-2√3)(√3+1))/((√3-1)(√3+1)) = (5√3 - 2√3 - 6 + 5)/(3 - √3 + √3 -1) = (3√3-1)/2= (3/2)*√3 -1/2

Answered by A W. Maths tutor

17781 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y(x+y)=3 evaluate dy/dx when y=1


A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


Find two positive numbers whose sum is 100 and whose product is a maximum.


integrate xsin(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences