Prove that the sqrt(2) is irrational

To do this we will assume sqrt(2) is rational, a fraction, which means: 21/2 = m/n; m,n belong to integers. Also, m/n is an irreductible fraction, meaning m and n have no common divisors.

21/2 = m/n <=> 2 = m2/n2 <=>  2n2=m2;  this means m2 is even (divisible by 2), which implies m is even (can be proven).

Hence, m can be rewritten as: m = 2k. Thus: 2n2=(2k)2 <=> 2n2=4k2 <=> n2=2k2; the same logic is applied as above: n2 is even (divisible by 2), which implies n is even.

We have now arrived at a contradiction: m/n was supposed to be an irreductable fraction, however both m and n can be divided by 2.

Ergo, by contradiction, we can conclude that srqt(2) cannot be a rational number, hence, srqt(2) is irrational.

JC
Answered by Joao C. Maths tutor

3188 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Daniel and Mohammed buy concert tickets for £63. All the concert tickets are the same price. Daniel pays £24.50 for 7 tickets. How many tickets does Mohammed buy? .


How do you solve the quadratic X^2 - 8X + 15 = 0 ?


Rearrange the following to make C the subject (3c+B)/2=C+A


N = 2A + B. A is a two-digit square number. B is a two-digit cube number. What is the smallest possible value of N?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences