Prove that the sqrt(2) is irrational

To do this we will assume sqrt(2) is rational, a fraction, which means: 21/2 = m/n; m,n belong to integers. Also, m/n is an irreductible fraction, meaning m and n have no common divisors.

21/2 = m/n <=> 2 = m2/n2 <=>  2n2=m2;  this means m2 is even (divisible by 2), which implies m is even (can be proven).

Hence, m can be rewritten as: m = 2k. Thus: 2n2=(2k)2 <=> 2n2=4k2 <=> n2=2k2; the same logic is applied as above: n2 is even (divisible by 2), which implies n is even.

We have now arrived at a contradiction: m/n was supposed to be an irreductable fraction, however both m and n can be divided by 2.

Ergo, by contradiction, we can conclude that srqt(2) cannot be a rational number, hence, srqt(2) is irrational.

Answered by Joao C. Maths tutor

2757 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the highest common factor and lowest common multiple?


Show that ((sqrt(18)+sqrt(2))^2)/(sqrt(8)-2) can be written in the form a(b + 2) where a and b are integers.


A 4kg bag of rice costs £3.20 and a 6kg bag of rice costs £5.80. Which bag of rice is the best value for money? Show all your working.


solve x^2 >3(x+6) (4 mks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences