Prove that the sqrt(2) is irrational

To do this we will assume sqrt(2) is rational, a fraction, which means: 21/2 = m/n; m,n belong to integers. Also, m/n is an irreductible fraction, meaning m and n have no common divisors.

21/2 = m/n <=> 2 = m2/n2 <=>  2n2=m2;  this means m2 is even (divisible by 2), which implies m is even (can be proven).

Hence, m can be rewritten as: m = 2k. Thus: 2n2=(2k)2 <=> 2n2=4k2 <=> n2=2k2; the same logic is applied as above: n2 is even (divisible by 2), which implies n is even.

We have now arrived at a contradiction: m/n was supposed to be an irreductable fraction, however both m and n can be divided by 2.

Ergo, by contradiction, we can conclude that srqt(2) cannot be a rational number, hence, srqt(2) is irrational.

Answered by Joao C. Maths tutor

3035 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

3^2 + 4^2 = x^2. Find x


Jorgen has 20 sweets in his pocket. The sweets are either blue or yellow. He picks a sweet and eats it and takes another sweet and eats it again. The probability of him picking two blue sweets is 6/30. How many yellow sweets does he have in his pocket.


Can you explain the formula method for solving quadratic equations?


Use BIDMAS to answer 2 + 7 x 10


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences