Prove that the sqrt(2) is irrational

To do this we will assume sqrt(2) is rational, a fraction, which means: 21/2 = m/n; m,n belong to integers. Also, m/n is an irreductible fraction, meaning m and n have no common divisors.

21/2 = m/n <=> 2 = m2/n2 <=>  2n2=m2;  this means m2 is even (divisible by 2), which implies m is even (can be proven).

Hence, m can be rewritten as: m = 2k. Thus: 2n2=(2k)2 <=> 2n2=4k2 <=> n2=2k2; the same logic is applied as above: n2 is even (divisible by 2), which implies n is even.

We have now arrived at a contradiction: m/n was supposed to be an irreductable fraction, however both m and n can be divided by 2.

Ergo, by contradiction, we can conclude that srqt(2) cannot be a rational number, hence, srqt(2) is irrational.

JC
Answered by Joao C. Maths tutor

3622 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A rectangle has a shorter side with a length of x and a longer side with a length of x + 8, the perimeter of the rectangle is 80cm. Calculate the value of x.


Solve algebraically the simultaneous equations, giving your answers in terms of b : 3x+by=5, x-y=-2


There are 11 pens in a bag, 4 Green and 7 Blue. What is the probability of picking the same coloured pens?


Share £650 in the ratio 8:5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning