Prove that the sqrt(2) is irrational

To do this we will assume sqrt(2) is rational, a fraction, which means: 21/2 = m/n; m,n belong to integers. Also, m/n is an irreductible fraction, meaning m and n have no common divisors.

21/2 = m/n <=> 2 = m2/n2 <=>  2n2=m2;  this means m2 is even (divisible by 2), which implies m is even (can be proven).

Hence, m can be rewritten as: m = 2k. Thus: 2n2=(2k)2 <=> 2n2=4k2 <=> n2=2k2; the same logic is applied as above: n2 is even (divisible by 2), which implies n is even.

We have now arrived at a contradiction: m/n was supposed to be an irreductable fraction, however both m and n can be divided by 2.

Ergo, by contradiction, we can conclude that srqt(2) cannot be a rational number, hence, srqt(2) is irrational.

Answered by Joao C. Maths tutor

2810 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify (3x+2)/(sqrt(x)-1)


Line A passes through point Q(2,3). Line B is parallel to line A and has the equation 2y-3x=4. What is the equation of line A?


2x + y = 18; x−y=6


Solve the simultaneous equations: 3x + 2y = 9 and x + 7y = 22.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences