Differentiate the following function u = Cos(x3)

 u = Cos(x3)

To differentiate this function we will use the chain rule. Firstly we will set xto another variable name such as v. So now v = x3 . Lets differentiate this. dv/dx = 3x2

We can now differentiate cos(v) du/dv = -sin(v). Now to complete the chain rule we must do dv/dx*du/dv. Which will be -sin(v)*3x= -3x2sin(v). Now we can just put the x3 back in instead of the v and our final answer will be -3x2sin( x3).

Answered by Serena B. Maths tutor

2740 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate xsin(x) by parts between the limits of -pi/2 and +pi/2


How to differentiate y = xcos(x)


Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x . [4]


Differentiate the equation y^2 + y = x^3 + 2x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences