Solve: 6x + 3 = 3x + 9

There are a few ways to tackle this particular style of problem. First off we can try doing it without using any bracket theory and just focus on the raw numbers (a somewhat simpler approach). Step 1: We're going to collect the x values onto one side of the equation. We do this by subtracting 3x from both sides, 6x + 3 - 3x = 3x + 9 - 3x which leaves us with 3x + 3 = 9 .Step 2: Now we want to move all the constant values (Numbers without x next to them) onto the other side away from the x. We do this by subracting 3 from both sides giving us 3x = 6. Step 3: Lastly we have 3 lots of x on one side and a constant on the other and we want to know what one lot of x is equal to. So if we divide both sides by 3 we are left with x = 2 which we can check by putting it back into the original equation. Does (6x2)+3 = (3x2)+9 15=15 so we've got the right solution. Just a quick aside on a slightly quicker but more complex method: Step 1: We see that the values on the RHS (Right Hand Side) of the equation are all divisible by 3 so we take 3 out and insert brackets : 3x + 9 becomes 3(x+3). Step 2: Divide both sides by the stuff outside the bracket in this case 3, giving you 2x + 1 = x + 3 then go through the first style with a simpler equation.

Answered by Calum G. Maths tutor

6125 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

1: x = 2, 2: y = x + 5 -> Solve this pair of simultaneous equations.


The diagram shows a prism. The cross-section of the prism is an isosceles triangle. The lengths of the sides of the triangle are 13 cm, 13 cm and 10 cm. The perpendicular height of the triangle is 12 cm. The length of the prism is 8 cm. Work out the total


find the equation of the tangent to the curve y=2x^3+3 at the point where x= -2


A line passes through coordinates (-2,4) and (8,9). Does the point with coordinates (32,55) fall on this line?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences