How do you calculate the cross product of two vectors?

To calculate the cross product of two vectors you take the coordinates of vector 1 which are (x1,y1,z1) and the coordinates of vector 2 which are (x2,y2,z2) and put these coordinates into a 3x3 matrix. On the first row of the matrix you have i, j, k; on the second row of the matrix you have x1, y1, z1; and on the bottom row x2, y2, z2. You then calculate the determinant of this matrix.

To do this you multiply i by (y1*z2 - z1*y2) then subtract j multiplied by (x1*z3 - x3*z1) and add k multiplied by (x1*y2 - x2*y1), the resultant vector is the cross product of the original vectors.

MK
Answered by Michael K. Further Mathematics tutor

2110 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Evaluate the following product of two complex numbers: (3+4i)*(2-5i)


How can the integrating factor method be derived to give a solution to a differential equation?


How do I integrate (sin x)^6?


Find the general solution to the differential equation y'' + 4y' + 3y = 6e^(2x) [where y' is dy/dx and y'' is d^2 y/ dx^2]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences