Two forces P and Q act on a particle. The force P has magnitude 7 N and acts due north. The resultant of P and Q is a force of magnitude 10 N acting in a direction with bearing 120°. Find the magnitude of Q and the bearing of Q.

There are 2 methods to solving this- the visual method and the kinesthetic method. Here I will use the visual one. We start by creating a vector triangle. We are going to use R = P + Q, where R is the resultant force of P and Q, to find the magnitude and bearing of Q. We know that P = 0i + 7j so now we find R by creating a right angle triangle. Using SOHCAHTOA, we get Sin30 = O/10 and Cos30 = A/10 which gives us O = 5 and A = 5Root[3]. So now we have R = 5Root[3]i - 5j. We can not insert these vectors into Q = R - P to get Q = 5Root[3]i - 5j - 0i - 7j = 5Root[3]i - 12j. Using Pythagoras' theorem, we find the magnitude of Q = Root[(5Root[3])^2 + 12^2] = 14.8N to 3dp. Next we find theta using SOHCAHTOA with the formula theta = Tan^-1(12/5Root[3]) to get theta = 54.18247436. We then add 90 and round to 3sf to get a bearing of 144 degrees.

Answered by Yaasir P. Maths tutor

10147 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.


What is a derivative?


Integral of sin^2(x) with respect to x


Find the equation of the straight line tangent to the curve y=2x^3+3x^2-4x+7, at the point x=-2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences