A curve has parametric equations -> x = 2cos(2t), y = 6sin(t). Find the gradient of the curve at t = π/3.

First we need to find the derivatives of x and y in terms of t. dx/dt can be found using the chain rule. Differentiating the inside of the bracket gives us 2. Multiplying the outside gives -2sin(2t) (Derivative of cos given in the formula book). Multiplying these terms together gives us dx/dt = -4sin(2t). For dy/dt its a simple differential from the formula book. dy/dt = 6cos(t). In order to find dy/dx, we can apply the chain rule one more time -> dy/dx = dy/dt*dt/dx. dt/dx is the reciprocal of dx/dt -> dt/dx = 1/(-4sin(2t)). Therefore dy/dx = 6cos(t)/-4sin(2t) = -3cos(t)/2sin(2t). Now we can input our value of t to find the gradient at t =  π/3 (Use a calculator). dy/dx = -3cos(π/3)/2sin(2π/3) = -(3/2)/root(3). Multiplying top and bottom by root(3) gives the final answer of -root(3)/2.

MM
Answered by Matvei M. Maths tutor

3951 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

if f is defined on with f(x)=x^2-2x-24(x)^0.5 for x>=0 a) find 1st derivative of f, b) find second derivative of f, c) Verify that function f has a stationary point when x = 4 (c) Determine the type stationary point.


Solve the differential equation dx/dt=-6*x , given when t=0 x=7.


A) Differentiate ln(x) b) integrate ln(x)


Let f(x) = x * sin(2x). Find the area beneath the graph of y = f(x), bounded by the x-axis, the y-axis and the line x = π/2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences