How does the angle of an inclined plane relate to its efficiency, given the coefficient of friction between a body and the plane?

Let’s define the efficiency first. The efficiency is basically the ratio between what we want over what we pay for. So, we want to lift an object up to a height, say H. In the ideal scenario we lift that object on the vertical, consuming a work equal to mgH. This is the ideal scenario, this is what we want, but we must use an inclined plane for lifting it to the desired height, therefore we will have to do more work, as we have to overcome the friction on the plane. In order to lift the object, we must apply a force F, parallel to the plane, where F is given by: F=Mumg*cos(alpha) + m * sin(alpha).

Thus, the work done = F * D, where D is the distance travelled along the plane to reach the desired height H.

Hence, D = H / sin(alpha)

Efficiency = (mgH)/ ((Mumgcos(alpha) + mg*sin(alpha)) *H/ sin(alpha))

Simplifying the fraction gives:

 Efficiency = 1/(1+Mu*cot (alpha)) - This is the relation required. 

Notations used:

m = mass of the object 

g = gravitational constant

alpha = the angle of the inclined plane 

Mu = coefficient of friction between the body and the inclined plane. 

AS
Answered by Alexandru S. Physics tutor

15728 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Assuming the Earth is a perfect sphere of radius R. By how much would your mass (m), as given by a scale, change if you measured it on the north pole and on the equator?


Two pendulums consist of a massless rigid rod of equal length attached to a small sphere of equal radius, with one sphere hollow for one pendulum and the other solid. Each pendulum undergoes damped SHM. Which pendulum has the largest time period?


Derive the formula for the maximum kinetic energy of an electron emitted from a metal with work function energy p , that is illuminated by light of frequency f.


What is the maximum frequency photon of one of the photons produced when a electron and positron annihilate each other?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences