A skydiver is at a height of 10,000 m. Assuming no air resistance, how fast is the skydiver travelling at 9,990 m above the ground?

The skydiver has potential energy at the top of his/her jump, which is transferred to kinetic energy when he/she jumps. The difference in height between the start of the jump and the point at which his/her velocity is being measured is: 10,000-9,990 = 10 m This means that the potential energy in a height of 10 m has been transferred to kinetic energy. So:

Ep=Ek=mgh=(1/2)mv2

          =m(9.81)(10)=(1/2)mv2    -->   The mass (m) terms cancel

          =98.1=(1/2)v2  

          =196.2=v2                        -->   Taking the square root of both sides gives the answer below Which means v=14 ms-1  

CB
Answered by Christopher B. Physics tutor

2036 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Why do lasers produce an intense coherent beam of light?


A baby in a bouncer bounces up and down with a period of 1.2s and amplitude of 90mm. Calculate the baby's maximum velocity.


How does refraction work?


When a toothbrush is charging, p.d. across the primary coil is 230 V, p.d. across the secondary coil is 7.2 V. The primary coil in the charging base has 575 turns of wire on its coil. Find the number of turns on the secondary coil inside the toothbrush.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning