P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')

i. P(AuB) = P(A) + P(B) - P(AnB) 

P(AnB) = P(A|B)P(B) = 0.3P(B)

P(AuB) = P(A) + 0.7 P(B) --> 0.6 = 0.2 + 0.7 P(B) --> P(B) = 4/7

ii. P(B'|A') = P(A'nB')/P(A')

P(A'nB') = 1 - P(AuB)

P(B'|A') = 0.4/0.8 = 1/2

Related Further Mathematics A Level answers

All answers ▸

The rectangular hyperbola H has parametric equations: x = 4t, y = 4/t where t is not = 0. The points P and Q on this hyperbola have parameters t = 1/4 and t = 2 respectively. The line l passes through the origin O and is perpendicular to the line PQ.


How do you differentiate arctan(x)?


Determine if these two vectors are perpendicular. a=[1,4,8], b=[0,6,-3]


What is sin(x)/x for x =0?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences