P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')

i. P(AuB) = P(A) + P(B) - P(AnB) 

P(AnB) = P(A|B)P(B) = 0.3P(B)

P(AuB) = P(A) + 0.7 P(B) --> 0.6 = 0.2 + 0.7 P(B) --> P(B) = 4/7

ii. P(B'|A') = P(A'nB')/P(A')

P(A'nB') = 1 - P(AuB)

P(B'|A') = 0.4/0.8 = 1/2

WS
Answered by Will S. Further Mathematics tutor

8858 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express cos5x in terms of increasing powers of cosx


How do you find the derivative of arcsinx?


Given sinhx = 0.5(e^x - e^-x), express its inverse, arcsinhx in terms of x.


The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences