P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')

i. P(AuB) = P(A) + P(B) - P(AnB) 

P(AnB) = P(A|B)P(B) = 0.3P(B)

P(AuB) = P(A) + 0.7 P(B) --> 0.6 = 0.2 + 0.7 P(B) --> P(B) = 4/7

ii. P(B'|A') = P(A'nB')/P(A')

P(A'nB') = 1 - P(AuB)

P(B'|A') = 0.4/0.8 = 1/2

Related Further Mathematics A Level answers

All answers ▸

Two planes have eqns r.(3i – 4j + 2k) = 5 and r = λ (2i + j + 5k) + μ(i – j – 2k), where λ and μ are scalar parameters. Find the acute angle between the planes, giving your answer to the nearest degree.


By forming and solving a suitable quadratic equation, find the solutions of the equation: 3cos(2A)-5cos(A)+2=0


Find values of x which satisfy the inequality: x^2-4x-2<10


Find the four complex roots of the equation z^4 = 8(3^0.5+i) in the form z = re^(i*theta)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences