y = 4x / (x^2 + 5). Find dy/dx.

We use the quotient rule here which states that if y = f(x)/g(x) then dy/dx = (f'(x)g(x) - g'(x)f(x)) / (g(x)^2). Here f(x) = 4x and g(x) = x^2 + 5, so we have f'(x) = 4 , g'(x) = 2x. This gives us dy/dx = (4(x^2 + 5) - 2x(4x)) / ((x^2 + 5)^2) = (4x^2 + 20 - 8x^2) / ((x^2 + 5)^2) = (20 - 4x^2) / ((x^2 + 5)^2).

Answered by Patrick S. Maths tutor

9769 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x) = (3x + 5)(4x - 7)


Why is the inverse of a gradient -1/x?


Find the minimum and maximum points of the graph y = x^3 - 4x^2 + 4x +3 in the range 0<=x <= 5.


Core 3: Find all the solutions of 2cos(2x) = 1-2sin(x) in the interval 0<x<360


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences