y = 4x / (x^2 + 5). Find dy/dx.

We use the quotient rule here which states that if y = f(x)/g(x) then dy/dx = (f'(x)g(x) - g'(x)f(x)) / (g(x)^2). Here f(x) = 4x and g(x) = x^2 + 5, so we have f'(x) = 4 , g'(x) = 2x. This gives us dy/dx = (4(x^2 + 5) - 2x(4x)) / ((x^2 + 5)^2) = (4x^2 + 20 - 8x^2) / ((x^2 + 5)^2) = (20 - 4x^2) / ((x^2 + 5)^2).

PS
Answered by Patrick S. Maths tutor

9987 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(a) Express x +4x+7 in the form (x+ p) +q , where p and q are integers.


Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)


How do I prove (x-2) is a factor of the function f(x) = x^2-4x+4?


Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences