How do you differentiate parametric equations?

Parametric equations are a set of equations which both depend on the same variable, such as t. An example of this would be:

x = 2t2​+1 and y = t​4​-2

As the value of t changes the equations will give you seperate values for x and for y which can be plotted on a coordinate grid.

To differentiate a parametric equation you must first differentiate both the equation for x and for y seperately with respect to t. So in this case it would be:

dx/dt = 4t and dy/dt = 4t3

We now have dx/dt and dy/dt. By simply divding dy/dt by dx/dt we get dy/dx as the dt cancels in the division (Since dividing is the same as multiplying by the reciprocal so (dy/dt)/(dx/dt) = (dy/dt)x(dt/dx) = dy/dx).

So for our example:

(dy/dt)/(dx/dt) = 4t3​/4t = t2 = dy/dx.

Answered by Tim W. Maths tutor

5568 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find an equation of the curve with parametric equations x=3sin(A) and y=4cos(A), in the form bx^2+cy^2=d.


"Solve cos(3x +20) = 0.6 for 0 < x < 360" - why are there more than one solution, and how do I find all of them?


Solve the equation 2(cos x)^ 2=2-sin x for 0 <=x<=180


Integrate (x+2)/((x+5)(x-7)) using partial fractions between the limits 5 and -2, giving your answer to 3sf


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences