Find dy/dx for y=5x^3-2x^2+7x-15

Step 1: To differentiate an equation there is a simple rule to follow. For y=axn dy/dx=anxn-1. so for an example y=x3, dy/dx=3x2. Therefore we just apply this rule into our equation.

Step 2: Break the equation down and do each factor of x seperately so 5x3 differentiates into 15x2, -2x2 differentiates to -4x, 7x differentiates to 7 and the 15 disappears from the end. This happens as the 15 just tells us where the line crosses the y axis and therefore has no bearing on the gradient.

Step 3: Put the differentiated parts back together to give the differentiated equation

dy/dx=15x2-4x+7

MT
Answered by Matthew T. Maths tutor

12164 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is y' when y=3xsinx?


Integrate (lnx)/x^2 dx between limits 1 and 5


Use the Chain Rule to differentiate the following equation: y=e^(3-2x)


Differentiate x^cos(x) and find the derivative of cosec^-1(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences