How to differentiate the function f(x)= 3x^3 + 2x^-3 - x^(1/2) + 6?

Firstly the general formula you can use on each of the x terms in the polynomial you are trying to differentiate is; f(x)=xn then f '(x)=nxn-1 where any constant, c, will differentiate to give 0. This formula basically states that you need to multiply x by it's power and then reduce that power by 1. If there is a coefficient then you still multiply x by it's power but you must remember to also take into account the coefficient e.g. if we have f(x)= 2x2 then we multiply 2x by 2 to get 4x and then reduce the power by one to get a final answer of f '(x)=4x1=4x. Therefore applying this to each of the terms in the given polynomial we get an answer of f '(x)= 9x2 - 6x-4 - (1/2)x-1/2

Answered by Fred E. Maths tutor

3342 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


a) Express 4(cosec^2(2x)) - (cosec^2(x)) in terms of sin(x) and cos (x) and hence b) show that 4(cosec^2(2x)) - (cosec^2(x)) = sec^2(x)


Integrate lnx


Simplify: (3x+8)/5 > 2x + 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences