Alice drops an apple from a height of 2 m above the ground. Assuming there is no air resistance, what is the speed of the apple when it hits the ground?

Since there is no loss of energy to air resistance and the apple is freely falling under the influence of gravity, this is an example where we can apply the principle of conservation of energy. In the initial state, just before it is released, the apple only has potential energy:  E0 = mgh, where m is the mass of the apple, g is the gravitational acceleration, and h is the height above the ground from which the apple is dropped. When it hits the ground, this energy has converted to kinetic energy: Ef = mv2/2, where v is the velocity we need to find. Equating the two expressions and re-arranging to solve for speed, gives v = (2gh)1/2.  (Answer: v = 6.26 ms-1)

OD
Answered by Oana D. Physics tutor

2848 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

What are the differences between microwaves and radio waves? How does this effect what we use them for?


Explain what is meant by “terminal velocity” with regards to falling objects.


A coil is connected to a voltmeter. A bar magnet, initially held above the coil, is left to fall into the coil. Explain why the voltmeter shows a reading. How will the reading of the voltmeter be affected if the magnet is dropped from a greater height?


What is the life cycle of a star?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning