Solve the simultaneous equations. x^2 + y^2 = 29. y-x = 3

The 2 equations are: 1) x2 + y2 = 29 2) y-x=3 In this kind of simultaneous equation, you cannot take it away from each other. Instead, you need to substitue. To do so, rearrange the 2nd equation to make x or y the subject. To make y the subject, we add x on each side: y= 3+ x We can now substitute y into the first equation and solve it. x2 + y2 = 29 x2 + (3+ x)(3+ x) = 29 x2 + x2 + 6x + 9 =29 2x2 + 6x -20 = 0 x2 + 3x -10 = 0 (x-2)(x+5) = 0 So x can be: x-2 = 0   or   x+5 = 0 x = 2             x = -5 This means y can be: y-x = 3 so y = 3 + x When x = 2, y = 3+2 = 5. When x = -5, y = 3+(-5) = -2.

PS
Answered by Pallave S. Maths tutor

12213 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

L1: y=3x-2 & L2: 3y-9x+5=0, show these two lines are parallel


Solve the simultaneous equations 4x + 2y =20 and 8x + 6y =45


What are surds and why are they used?


Jill takes out a loan of £6000 to get a car. The loan has a compound interest of 3% and she takes it out for 4 years. a) How much interest has Jill accrued after 2 years? b) What is the total amount to be paid after 4 years?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences