How do I sketch a graph of a polynomial function?

To sketch a polynomial function (a polynomial is a function involving powers of x, for example y = x3 + 2x2 - 13x + 10):

1. Start by differentiating the function to find its turning points (where the first differential is equal to zero). In this case, the first differential of the function is 3x2 + 4x -13. Solve for the roots of the differential (3x2 + 4x -13 = 0) by using the quadratic equation. The roots of the first differential are the points at which the graph has a maximum or minimum turning point (or, more unusually at A level, a point of inflection).

2.To check whether the turning point are maxima or minima, differentiate again for the second differential. Then put in the x-coodinates of each turning point. If the second differential is positive for that x-value, then the turning point is a minimum; if the second differential is negative then the point is a maximum.

3. Find the roots of the polynomial. Often, for a function with powers of x that are 3 or higher, an A-level question will give you a root; if not, try putting in values of x to the equation to find out if they are roots (a root is where y=0 on your graph). Once you have a root, use algebraic long division to factorise your polynomial. For example, with the polynomial y = x3 + 2x2 -13x +10, x=1 is a root, so you would divide (x3 + 2x2 -13x +10) by (x-1). This would give you (x2 + 3x - 10), which you can find the roots of using the quadratic equation. The graph crosses the x-axis at the roots - in this case, the graph crosses at x = -5, x = 1 and x = 2.

4. What does the graph do as x approaches infinity? Think about what happens as x gets very large and positive (going to the right on your graph). If the x term with the highest power is positive, then y will also be very large and positive. If the x term with the highest power is multiplied by a negative number, then y will be very large and negative. For example, for the funtion y = -x3 + 2x +1, as x becomes very large and positive, y becomes very large and negative, so the graph heads off downwards to the right after its last crossing point on the x-axis.

5. What happens as x approaches negative infinity? Again, think about what happens when x is very large and negative. This is a little more complicated because you also have to think about whether the highest power is odd or even. A negative value raised to a even power is positive, whilst a negative value raised to an odd power is negative. For example, when y = -x3 +2x + 1, as x becomes very large and negative, y becomes very large and positive. Here, x3 is negative when x is negative, but because x3 is multiplied by -1, y will be very large and positive when x approaches negative infinity.

6. When x is zero, what is y? It is always good to mark the y-intercept on your graph - just put x = 0 into the graph equation to find the value of the y-intercept.

Using all the information above, start your sketch. I'd usually start by marking the roots on the x-axis, then mark your turning points and join them up. Remember to only draw turning points you have found using the first differential - don't add any in by accident!

Answered by Rose A. Maths tutor

8027 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is differentiation and how do I do it?


y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


How can I demonstrate that (sin(T)+cos(T))(1-sin(T)cos(T))=(sin(T))^3+(cos(T))^3


A girl kicks a ball at a horizontal speed of 15ms^1 off of a ledge 20m above the ground. What is the horizontal displacement of the ball when it hits the ground?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences