2x^2-6x+5 can be written in the form a(x -b)^ 2 + c where a, b and c are positive numbers. Find a,b and c.

In order to solve this problem we must first complete the square. To complete the square we need to factorise the equation to get the coefficient of x to be 1. This gives: 2(x^2-3x)+5. We then need to complete the square for x^2-3x. This gives: 2((x-1.5)^2-(1.5)^2)+5=2((x-1.5)^2-2.25)+5. [When completing the square we need to half the coefficient of x and minus it from x^2, we then change the x^2 to x and square this. We then minus the value of the coefficient squared from the squared brackets.] We finally need to simplify: 2((x-1.5)^2-2.25)+5=2(x-1.5)^2-4.5+5=2(x-1.5)^2+0.5. So from the initial question this gives a=2, b=1.5, c=-0.5.

Answered by Chloe H. Maths tutor

20267 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve these simultaneous equations: 7x+3y=84, 2x+2y=32


How do I expand brackets?


How do we use ratios to figure out how much money to give to people of a lump sum?


Solve for x: 4 x + 1 = 2 x + 12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences