Calculate the pH change when water is added to 25.0 ml of 0.250M NaOH to form a 1.00l solution.

The initial [-OH] is 0.250M since NaOH releases 1 mole of -OH per mole of base. Using Kw=[H+][-OH], [H+]=(110-14)/0.250=410-14M (note remember units). Hence the initial pH=-log(410-14)=13.4 (note 3 significant figures since same s.f. as values in question). The diluted [-OH] is 0.250(25/1000)=6.2510-3M (dilution factor, remember units). Using Kw=[H+][-OH], [H+]=(110-14)/(6.2510-3)=1.610-12M. Therefore the new pH=-log(1.6*10-12)=11.80. Hence the pH change is 11.80-13.40=-1.60, so a decrease of 1.60pH units. I would write down the question on the whiteboard, and allow the student to work through it, giving guidance and helpful suggestions when they struggled/became stuck - but not simply telling them the answers because it is most beneficial for the student to think through the question for themselves.

Answered by Milind S. Chemistry tutor

14845 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

How does a catalyst and increasing temperature affect the rate of reaction?


How do buffers work?


State the relative charge and relative mass of a proton, of a neutron and of an electron. In terms of particles, explain the relationship between two isotopes of the same element. Explain why these isotopes have identical chemical properties.


What are the different types of bonding in chemicals?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences