Find the general solution to the differential equation: d^2y/dx^2 - 8 dy/dx +16y = 2x

d2y/dx2 - 8 dy/dx +16 y = 2x Auxiliary Equation: m2 - 8m +16 = 0 (m - 4)= 0 m = 4  (repeated root) Complimentary function: y = (A+Bx)e4x Particular integral: try yp = ax + b dyp/dx = a d2yp/dx2 = 0 0 - 8(a) + 16(ax + b) = 2x -8a + 16ax +16b = 2x Equate x1 terms: 16a = 2          => a = 1/8 Equate x0 terms: -8a + 16b = 0     => b = a/2 = 1/16 yp = 1/8 x + 1/16 ANSWER: (A+Bx)e4x + 1/8 x + 1/16

Related Further Mathematics A Level answers

All answers ▸

Find the integrating factor of the following first order ODE: dx/dt = -2tx +t.


Find roots 'a' and 'b' of the quadratic equation 2(x^2) + 6x + 7 = 0


How do you solve, dy/dx=(x^2+y^2)/xy?


Prove by induction that 11^n - 6 is divisible by 5 for all positive integer n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences