Find the general solution to the differential equation: d^2y/dx^2 - 8 dy/dx +16y = 2x

d2y/dx2 - 8 dy/dx +16 y = 2x Auxiliary Equation: m2 - 8m +16 = 0 (m - 4)= 0 m = 4  (repeated root) Complimentary function: y = (A+Bx)e4x Particular integral: try yp = ax + b dyp/dx = a d2yp/dx2 = 0 0 - 8(a) + 16(ax + b) = 2x -8a + 16ax +16b = 2x Equate x1 terms: 16a = 2          => a = 1/8 Equate x0 terms: -8a + 16b = 0     => b = a/2 = 1/16 yp = 1/8 x + 1/16 ANSWER: (A+Bx)e4x + 1/8 x + 1/16

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that 1^2 + 2^2 + 3^2 + . . . + n^2 = (1/6)n(n+1)(2n+1)


By forming and solving a suitable quadratic equation, find the solutions of the equation: 3cos(2A)-5cos(A)+2=0


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


A curve has polar equation r = 1 + cos THETA for 0 <= THETA <= 2Pi. Find the area of the region enclosed by the curve


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences