How do you find the matrix corresponding to a transformation?

Let's say that T is a transformation of the two dimensional plane. Remember that we have the two standard unit vectors (1,0) and (0,1). These are, respectively, the unit vectors pointing in the positive direction on the x-axis and the y-axis. We first look at what the transformation does to these two vectors. This gives us two new vectors T(1,0) and T(0,1) which form the columns of the matrix corresponding to the transformation T.

For example, if T is the reflection in the y-axis we get the following. Since we reflect in the y-axis, all points on the y-axis stay fixed and so T(0,1) = (0,1). On the other hand, by reflection (1,0) in the y-axis we get the point (-1,0). Therfore, the matrix has columns (-1,0) and (0,1). 

RF
Answered by Robin F. Further Mathematics tutor

2588 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution of: y'' + 4y' + 13y = sin(x)


Integrate ln(x) with respect to x.


Find the solution the the differential equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x)


A block of mass 50kg resting on a rough surface with a coefficient of friction equal to 1/3. Find the maximum angle at which the surface can be inclined to the horizontal without the block slipping. Give your answer to 3 significant figures


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning