How do you approach a simultaneous equations problem?

There should be at least as many simultaneous equations as there are unknown variables - or else you cannot get a numerical answer! Start by trying to eliminate one of the variables. You can multiply the equation by an integer to eliminate variables but remember to multiply both sides! Then subsitiute the value you have found back into one of the original equations. This will give you your answer.

Example:

4x+2y+z=11    (1)

3x+2y+2z=13     (2)

x+y+z=6    (3)

First, do (2)-(1), giving -x+z=2, and hence z=x+2

Then subsitute this into (3). This gives x+y+x+2=6, 2x+y=4 (4). If you double (4), you get 4x+2y=8 (5). Then do (1)-(5) to get z=3. We know z=x+2, so x=1. If we substitute both of these into (3), we find y=2. Thus this set of equations is solved.

Answered by Annie H. Maths tutor

2427 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the volume of a 3m long cone with radius 2m?


Solve 4(3x + 2) = 12 - 5x


Write 2x^2 + 16x + 26 in the form a(x + d)^2 + e where a, d, and e are integers.


Rearrange the formula: m = 2ab/4c+b to make b the subject


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences