Find the area between the curves y = x^2 and y = 4x - x^2.

First, we need to draw a diagram, to understand the question more clearly. 
y = x^2 is a common curve, but to sketch y = 4x - x^2, we should factorise it, to find where it inersects the x-axis.
4x - x^2 = x(4-x). When this equals 0, x = 0 or x = 4, so therse are the points where the curve intersects the x- axis. Now we have the information we need to sketch the curve.
Now we need to find the x- coordiantes of where the curves intersect, which we can see from the diagram is at 2 points. To do this, we equate the equations of the two curves. This gives:
x^2 = 4x - x^2
2x^2 - 4x = 0
x(2x - 4) = 0
So x = 0 or x = 4/2 = 2.
So these will be our limits of integration.
Now we can integrate between the two curves.
We can see from the diagram that the y = 4x - x^2 curve is above the y = x^2  curve in this region, so our integrand will be (4x - x^2) - x^2 = 4x - 2x^2.  So we need to calculate the integral of 4x - 2x^2 between the limits 0 and 2.
This integrates to give 2x^2 - (2/3)x^3. 
Substituting in the limits, we have [2(2)^2 - (2/3)(2)^3] - [2(0)^2 - (2/3)(0)^3] = 8 - 16/3 - 0 + 0 = 8/3.  So our area between the two curves is 8/3. 

Answered by Lamisah M. Maths tutor

7150 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let y be a function of x such that y=x^3 + (3/2)x^2-6x and y = f(x) . Find the coordinates of the stationary points .


Express root(125^x)/5^(2x-1) in terms of 5^a where a is an expression in terms of x.


The polynomial p(x) is given by p(x)=x^3 - 5x^2 - 8x + 48. Given (x+3) is a factor of p(x), express p(x) as a product of 3 linear factors.


A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences