Answers>Maths>IB>Article

dy/dx = 10exp(2x) - 4; when x = 0, y = 6. Find the value of y when x = 2.

First, we must evaluate what is given in the question. As it can be seen, the expression indicates that the problem consists of a first-order differential equation. We are also given the values of x and their respective y value. These indicate that the problem should be integrated and then solved to obtain the value for the integration constant. Finally, we must calculate the value of y for when x = 2. Following these steps, the differential equation can be integrated to give y = 1/210exp(2x) - 4x + C. We are given that y = 6 when x = 0, thus the value of C is calculated as C = 6 - 5exp(0) = 1. Thus the general expression of y is y = 5exp(2x) - 4x + 1. Substituting in the value of x = 2 gives y(2) = 5exp(22) - 42 + 1 = 5exp(4) - 7.

GL
Answered by Girts L. Maths tutor

2269 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The sum of the first and third term of a geometric sequence is 72. The sum to infinity of this sequence is 360, find the possible values of the common ratio, r.


What is a derivative - Introduction to Calculus


Three girls and four boys are seated randomly on a straight bench. What is the probability that the boys sit together and the girls sit together.


Find cos4x in terms of cosx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning