By using partial fractions, integrate the function: f(x) = (4-2x)/(2x+1)(x+1)(x+3)

(4-2x)/(2x+1)(x+1)(x+3) = A/(2x+1) + B/(x+1) + C/(x+3) 4-2x = A(x+1)(x+3) + B(2x+1)(x+3) + C(2x+1)(x+1) let x = -1: 4-2(-1) = B(2(-1)+1)((-1)+3) 6 = B(-1)(2) B = -3 let x = -3: 4-2(-3)= C(2(-3)+1)((-3)+1) 10 = C(-5)(-2) C = 1 let x = -1/2: 4-2(-1/2) = A(-1/2 + 1)(-1/2 + 3) 5 = A(1/2)(5/2) A = 4 f(x) = 4/(2x+1) - 3/(x+1) + 1/(x+3) int(f(x)) = int(4/(2x+1)) dx - int(3/(x+1)) dx + int(1/(x+3)) dx = 2int(2/(2x+1))dx -3int(1/(x+1))dx + int(1/(x+3))dx = 2ln|2x+1| - 3ln|x+1| +ln|x+3| + c

OF
Answered by Oliver F. Maths tutor

7852 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function (3x+4)^2 using methods of expansion and substitution


What are the uses of derivatives in algebra?


What is 'completing the square' and how can I use it to find the minimum point of a quadratic curve?


Given a fixed parabola and a family of parallel lines with given fixed gradient, find the one line that intersects the parabola in one single point


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences