Prove that 0.565656.... can be expressed as 56/99.

1) Let x=0.565656...

2) Thus 100x=56.565656...

3) Subtracting equation 1) from 2) gives:

99x=56

4) Rearrange for x:

x=56/99, Also x=0.565656... from 1)

Therefore 0.565656...=56/99

Answered by Daanyaal C. Maths tutor

3381 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How would I find the formula for the nth term of a sequence such as 3, 7, 11, 15, 19?


Solve the simultaneous equations: 5x + y = 21 and x - 3y = 9


The equation of line A is (x)^2 + 11x + 12 = y - 4, while the equation of line B is x - 6 = y + 2. Find the co-ordinate(s) of the point at which lines A and B intersect.


Here is a list of numbers: 15, 9, 12, 13, 6, 15, 18, 10, 11, 21. Find the mean, median and the mode.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences