Prove that 0.565656.... can be expressed as 56/99.

1) Let x=0.565656...

2) Thus 100x=56.565656...

3) Subtracting equation 1) from 2) gives:

99x=56

4) Rearrange for x:

x=56/99, Also x=0.565656... from 1)

Therefore 0.565656...=56/99

DC
Answered by Daanyaal C. Maths tutor

4241 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If a rectangle has length (x-4), width (x-5) and area 12 then what is the value of x?


Solve the next innequation: 12x-4>4x+12


Given that your grade for your computing is based on 5 coursework that weigh differently, and you know the results of 4: 80, 75, 50 and 90 which weighs 10%, 20%, 45% and 5%. What grade do you need in your last coursework to achieve at least a B (70%)?


Write down the length of side "a"


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning