Given that z = a + bj, find Re(z/z*) and Im(z/z*).

By definition z*  = a - bj.

We can write z/z* = ((a+bj)/(a-bj))*(a+bj)/(a+bj).

We calculate this to be z/z* = (a^2-b^2)/(a^2+b^2) + j(2ab)/(a^2+b^2).

Therefore, Re(z/z*) = (a^2-b^2)/(a^2+b^2).

Im(z/z*) = (2ab)/(a^2+b^2).

PJ
Answered by Penelope J. Further Mathematics tutor

5381 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What are imaginary numbers, and why do we bother thinking about them if they don't exist?


P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')


Using a Taylor's series or otherwise; derive Euler's Formula


Particles P and Q move in a plane with constant velocities. At time t = 0 the position vectors of P and Q, relative to a fixed point O in the plane, are (16i - 12j) m and -5i + 4j) m respectively. The velocity of P is (i + 2j) m/s and the velocity of Q


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences