Given that z = a + bj, find Re(z/z*) and Im(z/z*).

By definition z*  = a - bj.

We can write z/z* = ((a+bj)/(a-bj))*(a+bj)/(a+bj).

We calculate this to be z/z* = (a^2-b^2)/(a^2+b^2) + j(2ab)/(a^2+b^2).

Therefore, Re(z/z*) = (a^2-b^2)/(a^2+b^2).

Im(z/z*) = (2ab)/(a^2+b^2).

Related Further Mathematics A Level answers

All answers ▸

f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.


Integrate ln(x) with respect to x.


Find arsinh(x) in terms of x


how do I do proofs by induction?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences