Given that z = a + bj, find Re(z/z*) and Im(z/z*).

By definition z*  = a - bj.

We can write z/z* = ((a+bj)/(a-bj))*(a+bj)/(a+bj).

We calculate this to be z/z* = (a^2-b^2)/(a^2+b^2) + j(2ab)/(a^2+b^2).

Therefore, Re(z/z*) = (a^2-b^2)/(a^2+b^2).

Im(z/z*) = (2ab)/(a^2+b^2).

Related Further Mathematics A Level answers

All answers ▸

Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1


Find the general solution of: y'' + 4y' + 13y = sin(x)


Using mathematical induction, prove that n^3+2n is divisible by 3 for all integers n


Find the general solution of the second order differential equation y''(t)+y(t) = 5exp(2t)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences