Given that z = a + bj, find Re(z/z*) and Im(z/z*).

By definition z*  = a - bj.

We can write z/z* = ((a+bj)/(a-bj))*(a+bj)/(a+bj).

We calculate this to be z/z* = (a^2-b^2)/(a^2+b^2) + j(2ab)/(a^2+b^2).

Therefore, Re(z/z*) = (a^2-b^2)/(a^2+b^2).

Im(z/z*) = (2ab)/(a^2+b^2).

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to the differential equation y'' + 4y' + 3y = 6e^(2x) [where y' is dy/dx and y'' is d^2 y/ dx^2]


What modules have you done before?


How do I find and plot the roots of a polynomial with complex roots on an Argand diagram? e.g. f(z) =z^3 -3z^2 + z + 5 where one of the roots is known to be 2+i


Show that cosh^2(x)-sinh^2(x)=1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences